Abstract—The embedded systems are increasingly becoming a key technological component of all kinds of complex technical systems and an exhaustive analysis of the state of the art of all current performance with respect to architectures, design methodologies, test and applications could be very interesting. The Advanced Encryption Standard (AES), based on the well-known algorithm Rijndael, is designed to be easily implemented in hardware and software platforms. General purpose computing on graphics processing unit (GPGPU) is an alternative to reconfigurable accelerators based on FPGA devices. This paper presents a direct comparison between FPGA and GPU used as accelerators for the AES cipher. The results achieved on both platforms and their analysis has been compared to several others in order to establish which device is best at playing the role of hardware accelerator by each solution showing interesting considerations in terms of throughput, speedup factor, and resource usage. This analysis suggests that, while hardware design on FPGA remains the natural choice for consumer-product design, GPUs are nowadays the preferable choice for PC based accelerators, especially when the processing routines are highly parallelizable.

Keywords—AES, accelerators, FPGA prototyping, GPGPU, OpenCL.

1. Introduction

In the last decade the complexity of the architecture of graphical processing units has grown exponentially, pushing them outside the world of the dedicated processors to embrace the general-purpose applications field. Recently Graphic Processing Unit (GPU) manufacturers have focused their attention not only on typical graphical processing tasks, equipping their products with characteristics explicitly aimed to the general purpose computing (IEEE-754 compliance floating point units is just an example). Nevertheless, the massive parallel design, which is a key feature for a GPU architecture, is an attractive property in many number crunching applications. With the introduction of the Nvidia Fermi architecture [1] the interest in GPGPU has grown, because of its ambitious goal: for the first time, a GPU architecture was expressly designed to allow general-purpose computations. Even before the Fermi architecture, with the introduction of technologies such as CUDA, Stream and OpenCL the word GPGPU has assumed a new meaning. Before these frameworks, the only way to access the GPU processing power for general computing was to use shaders, by resorting to a cumbersome process in which data to process was encoded in textures pixels with many piratical limitations. However, many of this proof of concept showed the true potential of GPU devices. Subsequently GPU devices were used as accelerators for many scientific applications, ranging from image processing to Basic Linear Algebra Subprograms (BLAS), with successful results.

At the same time, FPGA devices have been traditionally used for various and different purposes, thanks to the very high degree of customization available to the designer. With more details this technology has been used to implement video processing [2] and [3], biometric recognition systems [4] and [5], mathematical and/or biological coprocessors [6] and [7], security access management [8], [9] and [10], and so on.

The difference in terms of overall costs, development time and background knowledge required to target both platforms justifies the interest by the scientific community in a full comparison. To make this comparison effective, an algorithm that can be easily implemented in both hardware and software platforms is needed. Rijndael algorithm is a good candidate for this purpose as it was designed keeping an eye on both platforms.

In this paper, two implementations of the AES encryption cipher in counter (CTR) mode are presented: a novel FPGA design for the Celoxica RC1000 board, developed with Agility’s Handel-C compiler, and parallel OpenCL software which runs on GPU. GPGPU is an alternative to reconfigurable accelerators based on FPGA devices. The FPGA implementation consists of four AES cores, each of which performs a single AES encryption in 0.48 μs with 70 MHz clock, delivering a throughput of about 1036 Mb/s. The OpenCL software is a simple port of an ANSI C implementation of the Rijndael algorithm. The two solutions exhibit good performance compared to a general-purpose CPU implementation, thus are both suitable to be used as accelerators. In addition, the architectural constraints, power consumption, speedup factors, overall costs of the two projects and their analysis has been compared to several others in order to establish which device is best at playing the role of hardware accelerator by each solution showing interesting considerations in terms of throughput, speedup factor, and resource usage. This analysis suggests that, while hardware design on FPGA remains the natural choice for consumer-product design, GPUs are nowadays the preferable choice for PC based accelera-
tors, especially when the processing routines are highly parallelizable. The paper is structured as follows. Section 2 presents a review of other works available in literature in which the two technologies are compared. In Section 3 the Rijndael algorithm is briefly described, together with the implemented CTR mode of operation. Sections 4 and 5 illustrate the FPGA and OpenCL proposed implementations respectively. Section 6 describes the testing environment while in Section 7 the results are extensively analyzed and commented. Section 8 presents an overview of similar works with a comment on the performance achieved by the proposed solutions. Finally, Section 9 contains the conclusions of this work.

2. Related Works

There is a variety of publications in literature that compare FPGA and GPGPU implementations and the results may vary depending on the platforms used. In 2005 Cope et al. [11] pointed out the limitations of GPU based solutions compared to FPGA devices due to the low memory bandwidth. In the same year, Mali et al. [12] showed an implementation of AES on FPGA, using the same platform used for this paper (the Celoxica RC1000 board). The proposed solution is c.a. 5.7 times faster running at a lower clock frequency. Lately, in 2007 another interesting comparison was made by Baker et al. [13]. In their work, they implemented a matched filter on both FPGA and GPU devices, obtaining similar throughput. Moreover, when comparing throughput against costs, they show how GPU solutions are the cheapest.

Costs involved in targeting FPGAs and GPUs have been analyzed by Shuai Che et al. in [14] comparing the two solutions in three different tasks: Gaussian elimination, Needleman-Wunsch and DES. However, the answer to the question “Have GPUs made FPGAs redundant as accelerator devices?” is still open. Contrasting results were shown depending on many factors, including the algorithm implemented, the targeted devices and the programming frameworks.

For example, in [15] the performance of common image processing algorithm implemented in FPGA and GPU are compared. The FPGA implementation outperforms the GPU, especially in those algorithms were a careful memory access policy is necessary to synchronize the GPU threads.

Different results are shown in [16] where an implementation of common SPICE routines is presented giving similar results in both hardware and software approaches. Even if FPGA can outperform small factor devices, when compared to most powerful GPU they suffer for the limited resources on board and the poor scalability.

Depending on the application, the results may be even more different. In [17] sparse matrix vector multiplication implemented on GPU outperforms the FPGA counterpart, although the authors point out that their FPGA solution is highly penalized by a very poor memory bandwidth.

Finally, in [18] a SEAL encryption implementation is presented in both FPGA and GPU. Both platforms achieve the same overall performance. In this paper, the implementation of an encryption algorithm is also discussed, but it is worth to note that AES is slightly more complex than SEAL and so it better exploit the differences between the two processing platforms.

3. The AES Standard

AES is the standard currently recommended by NIST for symmetric block cipher encryption. The actual standard publication [19], issued in November 2001, includes a detailed description of the Rijndael algorithm, which was chosen among others like MARS, RC6, Serpent and Twofish, because of its high degree of cryptographic security and its simplicity. The Rijndael selection process was carried through openly and with the full support of the scientific community. This has gained to AES the interest of many operators in the cryptographic security field and made the transition to the new standard very quick.

3.1. The Rijndael Algorithm

Rijndael is a symmetric block cipher algorithm, which runs a certain number of rounds on every input block. In Fig. 1 the algorithm structure is shown. Its design, which is totally different with respect to the previous standard DES, is very far from the traditional Feistel cipher structure. The Rijndael cipher applies Galois’s Finite Field arithmetic to match the confusion and diffusion requirements and it is composed of two distinct procedures for encryption and decryption. The input blocks size is of 128 bits while the key can be 128, 192 or 256 bit wide, depending on the security degree required. The key size is also related to the number or rounds of the encryption/decryption procedures as shown in Table 1.

<table>
<thead>
<tr>
<th>Key size [bit]</th>
<th>Rounds number</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>192</td>
<td>12</td>
</tr>
<tr>
<td>256</td>
<td>14</td>
</tr>
</tbody>
</table>

3.2. The AES Round Structure

Rijndael iterates the same sequence of operators, named round, on every input block. The plaintext is split in chunks of 16 bytes and each of these is treated as a 4×4 matrix called the state vector.
Vincenzo Conti and Salvatore Vitabile

The four operators \(\text{SubBytes}, \text{ShiftRows}, \text{MixColumns}\) and \(\text{AddRoundKey}\) are used in every round but the first and the last, which are defined differently.

The \(\text{SubBytes}\) function uses a substitution box, named \(\text{Sbox}\), to map every byte in the state vector on a proper 8 bit value. The mapping output is obtained with the following affine transformation applied to the multiplicative inverse \(x_7x_6\ldots x_0\) in the \(\mathbb{GF}(2^8)\) of the input byte:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
\end{bmatrix}
= \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
\end{bmatrix}
\]

The \(0x00\) value, whose multiplicative inverse is not defined in \(\mathbb{GF}(2^8)\), is simply mapped to the \(0x63\) byte. The Sbox is usually stored in memory and accessed like a look-up table to speed up the substitution function.

The \(\text{ShiftRows}\) function consists of a circular left shift of 1, 2 and 3 positions for the rows 2, 3 and 4 respectively of the state vector. The first row remains unchanged.

The \(\text{MixColumn}\) function consists of a linear transformation which is applied to the elements of each column:

\[
\begin{bmatrix}
S_0 \\
S_1 \\
S_2 \\
S_3 \\
\end{bmatrix}
= \begin{bmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02 \\
\end{bmatrix}
\times
\begin{bmatrix}
S_0 \\
S_1 \\
S_2 \\
S_3 \\
\end{bmatrix}
= \begin{bmatrix}
S_0 \\
S_1 \\
S_2 \\
S_3 \\
\end{bmatrix}.
\]

The \(c\) subscript is the column index. The multiplication and the add operators used in the matrix product are those defined in \(\mathbb{GF}(2^8)\).
The AddRoundKey function is the only operator, which involves the secret key. A distinct 128 bit subkey for each round is extracted from the key and is XOR-ed with the state vector. The key scheduling procedure is also described in [19].

3.2.1. Counter Mode

The design presented in this work uses the counter (CTR) mode of operation [20] because it allows the parallel execution of the cipher on each block while ensuring a strong degree of resistance to cryptanalysis.

Another interesting feature of the CTR mode consists in the use of the same encryption procedure for both encryption and decryption. This comes very useful for the AES cipher, which would normally require two distinct implementation for the encryption/decryption routines.

Looking at the Fig. 2 it is easy to note that the data being codified by the cipher is a special value, named counter, which is XOR-ed with each block, and is different for every block (e.g. incremented by 1 for each block encryption). The same operation has to be performed in decryption: the reversibility of the cipher actually resides on the use of the XOR operator (see Fig. 3).

The seed value for the counter can also be kept secret to increase the overall degree of security of the AES cipher with respect to brute-force attack.

4. AES Processor Design

The proposed design is an implementation of the 8 bit oriented version of AES. Each round operation takes a single clock cycle, except the SubBytes and ShiftRows operation that were mixed together. Some of the suggestions shown in [21] where used to reduce area occupation and maximum delay path without compromising the throughput. This lead to a total of 33 clock cycles required to perform a single AES encryption. A summary of the characteristics of this design is shown in Table 2, while the overall architecture is shown in Fig. 4.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Proposed AES processor summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core operating frequency</td>
<td>70 MHz</td>
</tr>
<tr>
<td>Memory operating frequency</td>
<td>33 MHz</td>
</tr>
<tr>
<td>Average throughput</td>
<td>1036 Mb/s</td>
</tr>
<tr>
<td>Occupation</td>
<td>18048 slices</td>
</tr>
<tr>
<td>Maximum delay path</td>
<td>13.92 ns</td>
</tr>
</tbody>
</table>

In next subsection a detailed description of the proposed architecture is discussed. Parallel and pipelined processing has been used to achieve high throughput performance.

4.1. Overall Architecture

A first level of parallelization is easily achieved by instantiating multiple AES cores on the chip. The memory interface of the Celoxica RC1000 board allows parallel access of the 4 memory banks. So in the proposed design four independent AES blocks are capable of running with full parallelism, achieving an overall performance of 4 times the single AES core, scoring a little more than 1 Gb/s.
Fig. 4. Overall architecture implementing AES processor using Xilinx Virtex 2000-E FPGA.

Fig. 5. AES round architecture.
4.2. AES Core Architecture

One AES core contains the circuitry required to perform AES 128 bit encryption. Table 3 shows the performance of the proposed AES core. Figure 5 shows the architecture of a single round circuit. The full round operation takes 3 clock cycles. To allow full parallelism to the SubBytes operation, 16 S-boxes have been instantiated in the ROM memory. Allocating registers array in Handel-C is very resource consuming compared to the usage of ROM bits, but obviously, the same ROM cannot be accessed simultaneously by multiple circuits. This led to the choice of allocating multiple S-boxes. Even though this choice sacrifices more area, the high advantage in the overall performance is a good compromise. Each AES core is implemented in 3360 slices (c.a. 17.5% of the total available on chip).

Table 3: Proposed AES Block Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total latency</td>
<td>0.48 µs</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>70 MHz</td>
</tr>
<tr>
<td>Average throughput</td>
<td>259 Mb/s</td>
</tr>
<tr>
<td>Occupation</td>
<td>3360 slices</td>
</tr>
<tr>
<td>Maximum delay path</td>
<td>13.92 ns</td>
</tr>
</tbody>
</table>

4.3. Pipelined Design

Unfortunately, the Celoxica RC1000 has very high latency memory, which cannot be accessed at frequencies higher than circa 33 MHz [22], [23]. The proposed AES circuit has a maximum delay path of 13.92 ns, so it can theoretically reach up to 71 MHz. To reduce the penalization introduced by the very poor memory interface, a double domain clock design was used. One domain clock, running at 33 MHz, contains the circuitry for data fetching and write back, while the other, running at 70 MHz, contains the 4 AES cores. The communication between the two clock domains is ensured by eight 128 bit channels, each of which equipped with a FIFO queue. The data-fetching block and the write back block are running in a parallel fashion. The synchronization between these two blocks is guaranteed by 4 semaphores. With this solution, memory fetches can happen while encrypting previously fetched blocks, increasing the overall performance (see Fig. 6). The total time required to encrypt 8 MB is nearly the same required to simply access the data to the on board RAM.

5. OpenCL Implementation

The GPU version has been implemented using OpenCL rather than similar but proprietary technologies for its portability. The results obtained by running the same implementation on different platforms (the Nvidia GT520 and GT555M and the Intel Core i7 processor) are reported in the following subsections.

5.1. The Threading Model

AES in CTR mode is perfectly suitable for parallel applications. As previously discussed in Subsection 3.2.1, in CTR mode every block encryption is independent, and thus there is no need to implement ad-hoc thread synchronization policies. Therefore, the adopted threading model can be simply summarized as follows:

- a grid is defined with only one work-group, and a single kernel running the Rijndael algorithm;
- in the work-group, each 128 bit data block is mapped into a single work-item. Thus, the number of work-items will be equal to the number of 128 bit data block in our stream;
- parallel execution of the work-items. The counter to use in CTR mode is calculated from the thread ID, as the threads are mapped 1:1 to the data blocks.

5.2. Targeting the GPU on a Consumer Grade PC

Special care need to be taken when working with consumer grade computers, as most probably the GPU used as accelerator will be the only one available to the system, and so it will be shared by several concurrent tasks, such as: desktop environment running in background updating the screen content, any application using 3D capabilities, accelerated video playback, etc. Therefore, it is important to understand that a single OpenCL program cannot lock the GPU for an undefined time. On some platforms, this may be a strict requirement. In the Microsoft Windows environment, for example, the video driver is automatically reset if the GPU doesn’t respond to the OS commands within a predefined timeout (usually just a couple of seconds). A bad designed OpenCL program could never terminate correctly. The solution used in this work is simple but effective: the input data is divided into chunks that the GPU can process without hogging the system. The size of the chunk is a critical point of choice: a small size will cause an under-utilization of the GPU processing power, while a large size can cause system hugging. In conducted experiments, the input chunk was set to 8 MB, as this size showed the best compromise between the utilization of the device and the
Vincenzo Conti and Salvatore Vitabile

overall performance. Moreover, 8 MB is exactly the same size used for the FPGA implementation, as it is the total amount of on board RAM memory. Using the same size increase the accuracy of our measurements as the overhead introduced to divide the data in multiple chunks is the same regardless of the processing platform being tested.

5.3. Practical Aspects

Another great advantage offered by OpenCL is the compatibility of the C99 specification [24]. With a few adjustments, our C code developed for the CPU was ported successfully to the GPU. In particular, only some decoration was added to the function prototypes to correctly address the various memory spaces available in OpenCL. A sensible increase in performance over the standard CPU implementation required less than a person-day work. OpenCL programs are compiled on the fly at run time, so the compatibility with different platforms is guaranteed by the underlying software layer. This may contrast with the possibility to optimize the code for a particular device or architecture. In this case, multiple versions of the same OpenCL software can be developed and then selected at run time depending on the running platform. As an example, consider how an OpenCL program accesses the global memory. Since the memory hierarchy may vary from architecture to architecture, different ways of implementing global memory access were examined. In particular, to ensure the maximum performance the data alignment of the write back operation matched the alignment of the running device.

6. Testing Environment

Each implementation was initially tested using the AES standard test vectors recommended in [19]. A software library named FastAESlib was then developed to create a common interface for accessing each processing platform (FPGAs, GPUs and CPUs) addressed in this work. It can perform several tasks, as summarized below:

- enumerate at run-time the processing platforms available in the system (FPGAs, GPUs and CPUs),
- offload the processing task to any of the available processing platforms,
- setup platform specific parameters (e.g. the working frequency of the FPGA),
- report the progress of the current task,
- measure the overall execution time (using the OS high resolution timers),
- measure the processing execution time reported from the devices (on board timers for FPGAs and OpenCL event timers for GPUs).

This library was then used to develop three software applications designed to test the various platforms on different scenarios. The first one is an image encipher/decipher, which processes uncompressed image data. Figures 7 and 8 show the user interface of this application. The user can set all the processing parameters exposed by the FastAESlib library and obtain on screen the performance counters measurements (both execution time and throughput). As shown in Fig. 8, after the encryption phase the image data is completely scrambled, without exposing neither the chromatic information nor the original image structure. This visually proves how powerful is the CTR mode compared to other standard modes of operation. As a proof of concept, another software application named FileCrypter was developed to test implementations with large files. This application can encipher/decipher a file with a single password.

Fig. 7. Screenshot of the software ImageCrypt. (See color pictures online at www.nit.eu/publications/journal-jtit)

Fig. 8. Screenshot of the software ImageCrypt after encryption.

Lastly, a scripted application was developed to benchmark the various implementations discussed in this work.

This library was then used to develop three software applications designed to test the various platforms on different scenarios. The first one is an image encipher/decipher, which processes uncompressed image data. Figures 7 and 8 show the user interface of this application. The user can set all the processing parameters exposed by the FastAESlib library and obtain on screen the performance counters measurements (both execution time and throughput). As shown in Fig. 8, after the encryption phase the image data is completely scrambled, without exposing neither the chromatic information nor the original image structure. This visually proves how powerful is the CTR mode compared to other standard modes of operation. As a proof of concept, another software application named FileCrypter was developed to test implementations with large files. This application can encipher/decipher a file with a single password.

Fig. 7. Screenshot of the software ImageCrypt. (See color pictures online at www.nit.eu/publications/journal-jtit)
This software utility performs AES encryption/decryption a specified number of times (in our tests 20 times) and calculates the average execution time and throughput. Moreover, when using the FPGA based processing platform, it can repeat the testing sequence at different clock frequencies, verifying the correctness of the result at each iteration. The results obtained using this tool is discussed in Section 6.

7. Experimental Results

The presented implementations show interesting results compared against a standard CPU. Table 4 shows the overall performance of the target systems including memory transfers time. When considering only the data rate, the fastest solution appears to be the OpenCL based implementation. However, it is important to consider the differences in the following three areas:

- the memory bandwidth can have a significant impact on the overall performance,
- the throughput should be normalized considering the different working frequencies,
- the various devices have a very different power consumption levels.

Table 4
Overall performance of the target platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>Clock [MHz]</th>
<th>Rate [Mb/s]</th>
<th>Rate/clock ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA</td>
<td>70</td>
<td>198</td>
<td>2.828</td>
</tr>
<tr>
<td>Nvidia GT 520</td>
<td>1620</td>
<td>520</td>
<td>0.321</td>
</tr>
<tr>
<td>Nvidia GT 555M</td>
<td>1180</td>
<td>1280</td>
<td>1.084</td>
</tr>
<tr>
<td>Intel Pentium 4</td>
<td>2000</td>
<td>42</td>
<td>0.0210</td>
</tr>
<tr>
<td>Intel Core i7</td>
<td>2500</td>
<td>81</td>
<td>0.0324</td>
</tr>
</tbody>
</table>

In Table 4 and Fig. 9 the overall performance measurements, but normalized with respect to the clock frequency, are shown. It is clear that the FPGA based solution can achieve better performance at lower clock rates, but it is worth to note that the GPU based solution exhibit a similar throughput/clock ratio, while the values reached by general purpose CPUs are two orders of magnitude lower. Interesting results are obtained when filtering out the time consumed by memory transfers (from the central memory to the on board memory). Table 5 and Fig. 10 show the processing throughput. This shows how the memory latency negatively affects the throughput of the RC1000 board, while the GPU based solutions are only lightly affected by the DMA operation. This is a logical consequence of the different technologies used by the two devices. Table 6 highlights the main differences.

Table 5
Performance of the target platforms without DMA time

<table>
<thead>
<tr>
<th>Platform</th>
<th>Clock [MHz]</th>
<th>Rate [Mb/s]</th>
<th>Rate/clock ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA</td>
<td>70</td>
<td>1036</td>
<td>14.8</td>
</tr>
<tr>
<td>Nvidia GT 520</td>
<td>1620</td>
<td>548</td>
<td>0.338</td>
</tr>
<tr>
<td>Nvidia GT 555M</td>
<td>1180</td>
<td>1440</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 6
RAM memory comparison

<table>
<thead>
<tr>
<th>Property</th>
<th>FPGA</th>
<th>GT 520</th>
<th>GT 555</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency [ns]</td>
<td>25</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Bus width [bit]</td>
<td>32</td>
<td>64</td>
<td>192</td>
</tr>
<tr>
<td>Clock [MHz]</td>
<td>33</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Technology</td>
<td>SRAM</td>
<td>DDR3</td>
<td>SDDR3</td>
</tr>
</tbody>
</table>

The normalized throughput-clock ratio without DMA time shows how powerful the FPGA implementation is (see Table 5). When artificially scaling the three platforms’
clocks to the same frequency, the FPGA is 12 times faster of the fastest GPU based solution. Other interesting considerations can be made about the power consumption. While FPGAs are low power devices, GPUs are generally power-demanding processors. However, compared to a general purpose CPU, both the FPGA and the GPU platforms are the most energy efficient. An important aspect worth to note is the development cost. Regardless of the hardware cost, where a substantial difference exists between FPGAs and GPUs, another major disequilibrium can be found in the Time To Market (TTM) parameter. Even if TTM is low for FPGAs, designing hardware is generally a more time consuming task when compared to software development. Lastly, another key advantage of GPGPU technologies is the portability of the code. The same code can be executed on different OpenCL compliant devices without adjustments exploiting their potentials. FPGA designs need careful handling when ported from one device to another, making the porting operation hard and the previously developed code less reusable.

8. Discussion and Comparison

This section is devoted to the analysis of several other AES implementations on both GPU and FPGA devices. The direct experience of the implementation described in the previous sections is the starting point of our analysis, but first comes a little digression on the parameters that will be considered as terms of comparison. A comparison based on throughput vs. clock rate would give no useful results when comparing such different architectures. A targeted approach is needed to analyze each one’s peculiarities before a direct comparison can be evaluated. FPGAs throughput will be analyzed against resources usage while GPUs' total number of stream processors will be considered as the main trade-off factor. When comparing the performance of such different devices it is important to investigate the different approaches available to the designers. For instance, AES can be implemented with or without look-up tables (T-boxes). Moreover when targeting hardware, pipelining is a natural choice against task parallelism, which is the foundation of the GPGPU computing model. In what follows, different FPGAs designs for AES are analyzed first. Next, parallel implementation of AES on GPU is examined. Table 7 shows a summary of the results of several AES implementations on FPGAs. In [12], Mali et al. presented a AES processor design in Handel-C on the same FPGA device used in this paper. The clock rate is slightly different, but the maximum throughput achieved from the solution proposed in this paper is higher. This may be due to the Handel-C compiler, which is very sensitive to the instruction order, and the control flow structures used.

As another example of the impact of the Handel-C designing process on the result, consider that the AES processor design proposed in this paper requires 48 clock cycles to complete one 128-bit block encryption. Hoang et al. [25] proposed a VHDL design that completes 128-bit block encryption in 13 clock cycles requiring a lower number of slices, and therefore can potentially achieve higher throughput at the same clock speed. As previously mentioned, another important point is the processor design. The highest throughputs reported in Table 7 are relative to fully pipelined implementation of AES ([26], [27] and [29]). In this case, it is interesting to notice that, while the slices usage is slightly varying, the throughput/clock ratio is almost the same for each of these implementations. This observation leads to the conclusion that the performance of an optimal AES processor design for FPGA scales almost linearly with the clock rate given a fixed slices usage. Table 8 shows the results achieved by several AES parallel implementations running on GPU. The OpenCL implementation proposed in this paper was made out of an ANSI C implementation of the AES encryption routine. Therefore, no particular code optimization technique was adopted. Several test runs on the same GPU device showed heavy performance variations with different number of executing threads. In general, particular care must be taken in order to achieve optimal performance on GPU. As an example,

Table 7

Comparison of discussed FPGA implementations

<table>
<thead>
<tr>
<th>Paper (characteristic)</th>
<th>Slices</th>
<th>Clock [MHz]</th>
<th>Throughput [Gb/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodriguez et al. [26]</td>
<td>5677</td>
<td>34.2</td>
<td>4.21</td>
</tr>
<tr>
<td>Mali et al. [12]</td>
<td>–</td>
<td>74</td>
<td>0.18</td>
</tr>
<tr>
<td>Kotturi et al. [27]</td>
<td>5408</td>
<td>232.6</td>
<td>29.77</td>
</tr>
<tr>
<td>Sivakumar et al. [28]</td>
<td>6766 CLB</td>
<td>194</td>
<td>2.257</td>
</tr>
<tr>
<td>Singh et al. [29]</td>
<td>6352</td>
<td>347.6</td>
<td>44.2</td>
</tr>
<tr>
<td>Hoang et al. [25]</td>
<td>895</td>
<td>–</td>
<td>1.03</td>
</tr>
<tr>
<td>The proposed system</td>
<td>3360</td>
<td>70</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 8

Comparison of discussed GPU implementations

<table>
<thead>
<tr>
<th>Paper (characteristic)</th>
<th>GPU Clock [MHz]</th>
<th>Throughput [Gb/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manavski et al. [30]</td>
<td>128 575</td>
<td>8.2</td>
</tr>
<tr>
<td>Wang et al. [31]</td>
<td>240 1476</td>
<td>1.05</td>
</tr>
<tr>
<td>Wang et al. [31]</td>
<td>240 1476</td>
<td>1.2</td>
</tr>
<tr>
<td>Keisuke et al. [32]</td>
<td>240 1476</td>
<td>32.5</td>
</tr>
<tr>
<td>The proposed system</td>
<td>144 1180</td>
<td>1.25</td>
</tr>
</tbody>
</table>
Fact, FPGA devices are still capable of delivering very high performance at low power consumption, but the possibility of programming GPUs with procedural paradigms, using the OpenCL or CUDA technologies, helped in making GPGPU an alternative to the use of FPGAs in the context of hardware accelerator design, where both FPGAs and GPUs are currently widely used, I/O capabilities are maybe the best point to evaluate the choice of one over the other achievement when the main concern is high performance.

9. Conclusion

This paper presents a direct comparison between FPGA and GPU used as accelerators for the AES cipher. The analysis of the results achieved on both has been compared to several others in order to establish which device is best at playing the role of hardware accelerator. In addition, the possibility of making a direct comparison between such different architectures have been investigated. This analysis suggests that, while hardware design on FPGA remains the natural choice for consumer-product design, GPUs are nowadays the preferable choice for PC based accelerators, especially when the processing routines are highly parallelizable. In fact, FPGA devices are still capable of delivering very high performance at low power consumption, but the possibility of programming GPUs with procedural paradigms, using the OpenCL or CUDA technologies, helped in making GPGPU an alternative to the use of FPGAs in the context of high performance computing, compensating for high power consuming levels.

References

Vincenzo Conti and Salvatore Vitabile

Vincenzo Conti is an Assistant Professor with the Faculty of Engineering and Architecture at the Kore University of Enna, Italy. He received his Laurea cum Laude degree and his Ph.D. in Computer Science from the University of Palermo in 2000 and 2005, respectively. His research interests include biometric recognition systems, programmable architectures, bio-inspired processing system, and user ownership in multi-agent systems. He has joined the Editorial Board of the International Journal on Security and Communication Networks (Hindawi), of the International Journal of Biosensors and Bioelectronics (MedCrave) and of the Complex and Intensive Systems Journal (Springer), has chaired and participated at several national and international conferences, and he has co-authored over 60 scientific publications, journals and conferences. Moreover, he has participated to several research projects funded by industries and research institutes in his research areas. Currently, he collaborates with the Department of Industrial and Digital Innovation (DIID) and the Department of Biopathology and Medical Biotechnologies (DBMED) of the University of Palermo, and with Italian National Council of Researches (CNR – Cefalù, Palermo).

E-mail: vincenzoconti@unikore.it
Faculty of Engineering and Architecture
University of Enna KORE
Via delle Olimpiadi - Cittadella Universitaria
94100 Enna, Italy

Salvatore Vitabile received the Laurea degree in Electronic Engineering and the Ph.D. degree in Computer Science from the University of Palermo in 1994 and 1999, respectively. He is currently an Associate Professor with the Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy. In 2007, he was a visiting professor in the Department of Radiology, Ohio State University, Columbus, USA. Dr. Vitabile is the Editor-in-Chief of the International Journal of Adaptive and Innovative Systems (Inderscience Publishers). He has also joined the Editorial Board of the Journal of Ambient Intelligence and Humanized Computing (Springer), the International Journal of Information Technology, Communications and Convergence (Inderscience Publishers), and the International Journal of Space-Based and Situated Computing (Inderscience Publishers). He has co-authored more than 150 scientific papers in referred journals and conferences. He has chaired, organized, and served as member of the organizing committee of several international conferences and workshops. Dr. Vitabile is currently member of the Board of Directors of SIREN (Italian Society of Neural Networks). His research interests include specialized architecture design and prototyping, biometric authentication systems, driver assistance systems, and medical data processing and analysis.

E-mail: salvatore.vitabile@unipa.it
Department of Biopathology and Medical Biotechnologies
University of Palermo
Via del Vespro 129
90127 Palermo, Italy