Two Semantics of Trust Management Language with Negation

Anna Felkner

Research and Academic Computer Network (NASK), Warsaw, Poland

Abstract—The family of Role-based Trust management languages is used for representing security policies by defining a formalism, which uses credentials to handle trust in decentralized, distributed access control systems. A credential provides information about the privileges of users and the security policies issued by one or more trusted authorities. The main topic of this paper is RT_{\oplus}, a language which provides a carefully controlled form of non-monotonicity. The core part of the paper defines two different semantics of RT_{\oplus} language – a relational, set-theoretic semantics for the language, and an inference system, which is a kind of operational semantics. The set-theoretic semantics maps roles to a set of entity names. In the operational semantics credentials can be derived from an initial set of credentials using a set of inference rules. The soundness and the completeness of the inference system with respect to the set-theoretic semantics of RT_{\oplus} will be proven.

Keywords—access control, inference system, monotonicity, Role-based Trust management, set-theoretic semantics.

1. Introduction

Confidential data, whether in electronic, paper or other form must be properly protected. Guaranteeing that the data and services offered by a computer system are not made available to unauthorized users is an increasingly significant and challenging issue, which must be solved by reliable software technologies. This problem is usually solved by implementing access control techniques. In a typical access control scenario there are two entities, one is the requester that wants to access a protected resource, while the other is an entity that is the resource owner or provider. Usually these are the only entities involved in making the authorization decision. This approach fits well into closed, centralized environments, in which the identity of users is known in advance. Unfortunately, this simple scenario does not apply to highly distributed and decentralized networks. Quite different challenges arise in such decentralized and open systems, where the identity of users is not known in advance and the set of users can change. In decentralized environments, the resource owner and the requester often are unknown to one another, making access control based on identity ineffective. To be able to deal with different requesters coming from different security domains, we need a more flexible solution, named trust management.

Trust management is an approach to access control in decentralized distributed systems, where access control decisions are based on policy statements made by multiple principals. The potential and flexibility of trust management approach stems from the possibility of delegation: a principal may transfer limited authority over a resource to other principals. Such a delegation is implemented by means of an appropriate credential. This way, a set of credentials defines the access control strategy and allows deciding on who is authorized to access a resource, and who is not.

Despite the fact that the credentials-based models do, to a large degree, solve the access control problem in open systems, they still have some shortcomings. Most trust management languages are monotonic: adding new assertion to a query can never result in canceling an action, which was accepted before [1]. It is a problem, because each policy statement or credential added to the system can only increase the capabilities and privileges granted to others. The monotonicity property can simplify the design and analysis of complex network-based security protocols. It is a good property for researching, analyzing and proving, but causes limited usability, because revocation of privileges is not possible to assert. However, we can find in a literature various extensions of basic languages and models that create negation on different levels. And thus, in this way we achieve a non-monotonicity. One of the extensions is Role-based Trust management language with negation.

The rest of the paper is organized as follows. An overview of the work related to trust management systems and languages is given in Section 2. Section 3 shows the overview of the family of Role-based Trust management languages, Section 4 describes set-theoretic semantics of RT languages, including an example, and inference system over RT credentials with example is shown in Section 5. Final remarks are given in Conclusions.

2. Related Work

Traditional access control systems often rely on Role-Based Access Control (RBAC) model [2], which groups the access rights by the role name and limits the access to a resource to those users, who are assigned to a particular role. It is the most flexible type of access control policy.

The first trust management application described in the literature was PolicyMaker [3], which defined a special assertion language capable of expressing policy statements, which were locally trusted, and credentials, which
had to be signed using a private key. The next generation of trust management languages were KeyNote [4], which was an enhanced version of PolicyMaker, SPKI/SDSI [5] and a few other languages [6]. All those languages allowed assigning privileges to entities and used credentials to delegate permissions from its issuer to its subject. What was missing in those languages was the possibility of delegation based on attributes of the entities and not on their identity. Responding to this need, a family of Role-based Trust management languages has been introduced in [7]–[9]. These languages have a well-defined syntax and semantics, which made them easy to extend in order to apply them to different needs.

A set-theoretic semantics, which defines the meaning of a set of credentials as a function from the set of roles into the power set of entities, has been defined for RT₀ [10], [9] and relational semantics, which apply to RT in [11].

One of the extensions of RT languages is the use of time validity constraints of the credentials, which made the languages of the RT family more realistic, because in the real world permissions are usually given just for a limited period of time. Time-dependant credentials were introduced in [10] (for RT₀) and in [12] (for RT²). This type of time constraints can eliminate the need of non-monotonic system in some cases. Another approach to the monotonicity feature is an extension of RT₀ language, which was created to manage trust in P2P applications and access control in virtual communities described in [1].

3. Role-based Trust Management Languages

The term of trust management was introduced in year 1996 by Blaze et al. in [13], who defined it as a unified approach to specify and interpret security policies, credentials and trust relationships. In a trust management system an entity’s privilege is based on its attributes instead of its identities. An entity’s attributes are demonstrated through digitally signed credentials issued by multiple principals. A credential is an attestation of qualification, competence or authority issued to an individual by a third party. Examples of credentials in real life include identification documents, driver’s licenses, membership cards, keys, etc. A credential in a computer system can be a digitally signed document.

RT is a family of Role-based Trust management languages, which combines trust management and RBAC features. To define a trust management system, a language is needed for describing entities (principals and requesters), credentials and roles, which the entities play in the system. RT₀ is a simple yet powerful trust management language. It is the core language of RT family, described in detail in [9]. It allows describing localized authorities for roles, role hierarchies, delegation of authority over roles and role intersections. All the subsequent languages add new features to RT₀, they are progressively increasing in expressive power and complexity. RT₁ introduces parameterized roles, which can represent relationships between entities. RT₂ extends RT₁ with logical objects, which can be used to represent permissions given to entities with respect to a group of logically related objects (resources). Those extensions can help in keeping the notation concise, but do not increase the expressive power of the language, because each combination of parameters in RT₁ and each permission to a logical object in RT₂ can be defined alternatively as a separate role in RT₀. RT³ language has been introduced to support threshold and separation of duties policies. Similar to a role, which defines a set of principals, a manifold role defines a set of principal sets, each of which is a set of principals whose cooperation satisfies the manifold role.

RT⁰ provides mechanism to describe delegation of rights and role activations, which can express selective use of capacities and delegation of these capacities, which are useful when one wants to delegate authority temporarily. In many scenarios, an entity prefers not to use all his privileges, all the more, to delegate all his rights. RT₀ provides a carefully controlled form of non-monotonicity. The members of the RT family presented so far are monotonic: adding a credential to the system can only result in granting additional privileges, it cannot result in canceling an action, which was accepted before. It is a problem, because each policy statement or credential added to the system can only increase the capabilities and privileges granted to others.

In [1], Czenko et al. argue that many access control decisions in complex distributed systems, like virtual communities, are hard to model in a purely monotonic language. They propose RT₀, which adds to RT a restricted form of negation called negation in context. RT₀ introduces a new operator ⋄ and the so called exclusion credential. It was created to manage trust in P2P applications and access control in virtual communities. The features of RT² and RT⁰ can be combined together with the features of RT₀, RT₁ or RT₂. A more detailed treatment of RT family can be found in [8].

3.1. The Syntax of RT Family Languages

Basic elements of RT languages are entities, role names, roles and credentials. Entities represent principals that can define roles and issue credentials, and requesters that can make requests to access resources. An entity can, e.g., be a person or program identified by a user account in a computer system or a public key. We denote an entity by a name starting with an uppercase letter (or just an uppercase case), e.g., A, Alice, University. Role names represent permissions that can be issued by entities to other entities or groups of entities. A role name is denoted by a string starting with a lowercase letter (or just a lowercase letter), like r or student. Roles denote sets of entities that have particular permissions granted according to the access control policy. Roles have the form of entity followed by a role name, separated by a dot, like A.r or University.student. Credentials define roles by appointing a new member of the role or by delegating authority
to the members of other roles. There are four types of credentials in $R\subseteq_0$, which are interpreted in the following way:

- $A \rightarrow B$ – simple membership: entity B is a member of role A;
- $A \rightarrow B.s$ – simple inclusion: role A includes (all members of) role $B.s$. This is a delegation of authority over r from A to B;
- $A \rightarrow B.s.t$ – linking inclusion: role A includes role $C.t$ for each C, which is a member of role $B.s$. This is a delegation of authority from A to all the members of the role $B.s$;
- $A \rightarrow B.s \cap C.t$ – intersection inclusion: role A includes all the entities who are members of both roles $B.s$ and $C.t$. This is a partial delegation from A to B and C;
- $A \rightarrow B.s \cap C.t$ – exclusion: all members of $B.s$ which are not members of $C.t$ are members of A.

A policy is a finite set of credentials.

The languages discussed in this paper can be used, in general, in very complex systems. Therefore, we present here only a simplified example, with the intention to illustrate the basic notions and the notation, with a focus on RT_\subseteq credentials.

Example 1. Suppose that John wants to share his pictures and movies using file sharing system. John restricts the access to his pictures to those of his friends, who are a members of Picture Club and he gave similar restriction to his movie, but he requires that his friends should be members of Movie Club instead of Picture Club. John can also create a list of people who are forbidden to see the gallery of his private pictures, which means that people, who are on the list can see the general gallery of his pictures but not the private one. The entire policy can be expressed as follows:

1. $John.accessPic \leftarrow John.friend \cap John.pictureClub$ (1)
2. $John.accessMov \leftarrow John.friend \cap John.movieClub$ (2)
3. $John.privatePic \leftarrow John.accessPic \ominus John.blackList$ (3)

Now, assume that the following credentials have been added:

4. $John.friend \leftarrow Bob$ (4)
5. $John.friend \leftarrow Lily$ (5)
6. $John.friend \leftarrow Maria$ (6)
7. $John.friend \leftarrow Sofia$ (7)
8. $John.pictureClub \leftarrow Bob$ (8)
9. $John.pictureClub \leftarrow Etan$ (9)
10. $John.pictureClub \leftarrow Lily$ (10)
11. $John.movieClub \leftarrow Alice$ (11)
12. $John.movieClub \leftarrow Maria$ (12)
13. $John.movieClub \leftarrow Sofia$ (13)
14. $John.blackList \leftarrow Bob$ (14)

Then one can conclude that, according to the policy, people who have access to John’s pictures are Bob and Lily, but only Lily has access to his private gallery, and Maria and Sofia have access to John’s movies.

4. The Set-Theoretic Semantics of RT Languages

A set-theoretic semantics of $R\subseteq_0$, which defines the meaning of a set of credentials as (monotone) function from the set of roles into the power set of entities, has been originally defined in [9]. A slightly different approach, closely related to the semantics of $R\subseteq_0$ language, was shown in [14], where various semantic readings of Simple Distributed Security Infrastructure (SDSI) were provided. A definition quoted in this section is a modified version of the same semantics, which has been introduced in [10], with addition of \ominus operator.

Definition 1. The semantics of a set \mathcal{P} of RT credentials, denoted by $\mathcal{S}_\mathcal{P}$, is the smallest relation \mathcal{S}_i, such that:

1. $\mathcal{S}_0 = \emptyset$
2. $\mathcal{S}_{i+1} = \bigcup_{c \in \mathcal{P}} f(\mathcal{S}_i, c)$ for $i = 0, 1, \ldots$

which is closed with respect to function f, which describes the meaning of credentials in the following way (A, B, C, X, Y are entities):

- $f(\mathcal{S}_i, A.r \leftarrow X) = \{\{A, r, X\}\}$
- $f(\mathcal{S}_i, A.r \leftarrow B.s) = \{\{A, r, X\} : (B.s, X) \in \mathcal{S}_i\}$
- $f(\mathcal{S}_i, A.r \leftarrow B.s.t) = \bigcup_{c \in \{B.s, C.t\} \subseteq \mathcal{S}_i} \{\{A, r, X\} : (C.t, X) \in \mathcal{S}_i\}$
- $f(\mathcal{S}_i, A.r \leftarrow B.s \cap C.t) = \{\{A, r, X\} : (B.s, X) \in \mathcal{S}_i \land (C.t, X) \in \mathcal{S}_i\}$
- $f(\mathcal{S}_i, A.r \leftarrow B.s \ominus C.t) = \{\{A, r, X\} : (B.s, X) \in \mathcal{S}_i \land (C.t, Y) \in \mathcal{S}_i\}$

Example 2. Set-theoretic semantics for Example 1

We use Example 1 from Section 3 to illustrate the definition of RT semantics.

The sequence of steps to compute consecutive relations \mathcal{S}_i is shown in Table 1. Consecutive sections of the table describe relations \mathcal{S}_0 through \mathcal{S}_5. Each section of Table 1 has exactly one row, which corresponds to the issuer of the role, John. The columns of the table correspond to role names. This way, a cell of the table shows the set of entities, which are members of the respective role issued by John.

The starting relation \mathcal{S}_0 is, by definition, empty. According to Definition 1, only credentials (4)–(14) are
mapped in \mathcal{F}_0 into nonempty sets by function f. These sets are shown in relation \mathcal{F}_1 in Table 1. In \mathcal{F}_1, credentials (1) and (2) are mapped into instances $(John, accessPic, Bob)$, $(John, accessPic, Lily)$, $(John, accessMov, Maria)$, and $(John, accessMov, Sofia)$ of relation \mathcal{F}_2, and in \mathcal{F}_2, credential (3) is mapped into instances $(John, privatePic, Lily)$. The resulting relation \mathcal{F}_3 cannot be changed using the given set of credentials, hence $\mathcal{F}_3 = \mathcal{F}_3$

and it is the end of the set-theoretic semantics for Example 1.

5. The Inference System over RT Credentials

The member sets of roles can also be calculated in a more convenient way (than set-theoretic semantics) using an inference system, which defines an operational semantics of RT languages. An inference system consists of an initial set of formulae that are considered to be true, and a set of inference rules, that can be used to derive new formulae from the known ones. Let \mathcal{P} be a given set of RT credentials. The application of inference rules of the inference system will create new credentials, derived from credentials of the set \mathcal{P}. A derived credential c will be denoted using a formula $\mathcal{P} \vdash c$, which should be read: credential c can be derived from a set of credentials \mathcal{P}.

Definition 2. The initial set of formulae of an inference system over a set \mathcal{P} of RT credentials are all the formulae $c \in \mathcal{P}$, for each credential c in \mathcal{P}.

<table>
<thead>
<tr>
<th>\mathcal{F}_0</th>
<th>\mathcal{F}_1</th>
<th>\mathcal{F}_2</th>
<th>\mathcal{F}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>John friend</td>
<td>John friend</td>
<td>John friend</td>
<td>John friend</td>
</tr>
<tr>
<td>pictureClub</td>
<td>pictureClub</td>
<td>pictureClub</td>
<td>pictureClub</td>
</tr>
<tr>
<td>movieClub</td>
<td>movieClub</td>
<td>movieClub</td>
<td>movieClub</td>
</tr>
<tr>
<td>blackList</td>
<td>blackList</td>
<td>blackList</td>
<td>blackList</td>
</tr>
<tr>
<td>accessPic</td>
<td>accessPic</td>
<td>accessPic</td>
<td>accessPic</td>
</tr>
<tr>
<td>accessMov</td>
<td>accessMov</td>
<td>accessMov</td>
<td>accessMov</td>
</tr>
<tr>
<td>privatePic</td>
<td>privatePic</td>
<td>privatePic</td>
<td>privatePic</td>
</tr>
</tbody>
</table>

The inference rules of the system are the following:

(W1) $\frac{c \in \mathcal{P}}{\mathcal{P} \vdash c}$

(W2) $\frac{\mathcal{P} \vdash A.r \leftarrow B.s \quad \mathcal{P} \vdash B.s \leftarrow X}{\mathcal{P} \vdash A.r \leftarrow X}$

(W3) $\frac{\mathcal{P} \vdash A.r \leftarrow B.s.t \quad \mathcal{P} \vdash B.s \leftarrow C}{\mathcal{P} \vdash C.t \leftarrow X \quad \mathcal{P} \vdash A.r \leftarrow X}$

(W4) $\frac{\mathcal{P} \vdash A.r \leftarrow B.s \cap C.t \quad \mathcal{P} \vdash B.s \leftarrow X}{\mathcal{P} \vdash C.t \leftarrow X \quad \mathcal{P} \vdash A.r \leftarrow X}$

(W5) $\frac{\mathcal{P} \vdash A.r \leftarrow B.s \cap C.t \quad \mathcal{P} \vdash B.s \leftarrow X}{\mathcal{P} \vdash C.t \leftarrow Y \quad \mathcal{P} \vdash A.r \leftarrow X \setminus Y}$

The five kinds of credentials described in Section 4 are handled by the rules above. The rules should be self-explanatory.

5.1. Soundness and Completeness of Inference System over RT^C Credentials

There could be a number of inference systems defined over a given language. To be useful for practical purposes an inference system must exhibit two properties. First, it should be sound, which means that the inference rules could derive only formulae that are valid with respect to the semantics of the language. Second, it should be complete, which means that each formula, which is valid according to the semantics, should be derivable in the system.

Due to space constraints, we only present sketches of proofs and proofs for (W5) formula (introduced in the RT^C language), full proofs for the rest formulae can be found in [15]. The semantics of a set \mathcal{P} of RT credentials, defined by the inference system, is given by a set of all the formulae of the type: $\mathcal{P} \vdash A.r \leftarrow X$.

Table 1

<table>
<thead>
<tr>
<th>\mathcal{F}_0</th>
<th>\mathcal{F}_1</th>
<th>\mathcal{F}_2</th>
<th>\mathcal{F}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>John friend</td>
<td>John friend</td>
<td>John friend</td>
<td>John friend</td>
</tr>
<tr>
<td>pictureClub</td>
<td>pictureClub</td>
<td>pictureClub</td>
<td>pictureClub</td>
</tr>
<tr>
<td>movieClub</td>
<td>movieClub</td>
<td>movieClub</td>
<td>movieClub</td>
</tr>
<tr>
<td>blackList</td>
<td>blackList</td>
<td>blackList</td>
<td>blackList</td>
</tr>
<tr>
<td>accessPic</td>
<td>accessPic</td>
<td>accessPic</td>
<td>accessPic</td>
</tr>
<tr>
<td>accessMov</td>
<td>accessMov</td>
<td>accessMov</td>
<td>accessMov</td>
</tr>
<tr>
<td>privatePic</td>
<td>privatePic</td>
<td>privatePic</td>
<td>privatePic</td>
</tr>
</tbody>
</table>
To prove the soundness of a formula, one must prove that the triple \((A,r,X)\) belongs to the semantics \(\mathcal{I}_\rho\) of the set of credentials \(\mathcal{P}\). Let us first note that all the formulae \(\mathcal{P} \triangleright A.r \leftarrow X\), such that \(A.r \leftarrow X \in \mathcal{P}\) are sound. This is proved in Lemma 1.

Lemma 1. If \(A.r \leftarrow X \in \mathcal{P}\) then \((A,r,X) \in \mathcal{I}_\rho\).

Proof. The relation \(\mathcal{I}_\rho\), which defines the semantics of \(\mathcal{P}\), is a limit of a monotonically increasing sequence of sets \(\mathcal{I}_0, \mathcal{I}_1, \ldots\), such that \(\mathcal{I}_0 = \emptyset\). According to Definition 1: \(f(\mathcal{I}_0, A.r \leftarrow X) = (A,r,X)\). Hence, \((A,r,X) \in \mathcal{I}_1\) and because \(\mathcal{I}_1 \subseteq \mathcal{I}_\rho\) then \((A,r,X) \in \mathcal{I}_\rho\).

To prove the soundness of the inference system over \(\mathcal{P}\), we must prove the soundness of each formula \(\mathcal{P} \triangleright A.r \leftarrow X\), which can be derived from the set \(\mathcal{P}\). This is proven in Theorem 1.

Theorem 1. If \(\mathcal{P} \triangleright A.r \leftarrow X\) then \((A,r,X) \in \mathcal{I}_\rho\).

Proof. By induction with respect to the number \(n\) of inference steps, which are needed to derive a formula \(\mathcal{P} \triangleright A.r \leftarrow X\). If \(n = 1\) then the formula \(\mathcal{P} \triangleright A.r \leftarrow X\) could be derived only using rule (W1), because the premises of only this rule are axioms. Hence, the thesis is true according to Lemma 1. For the inductive step, assume that the thesis is true if the number of inference steps was not greater than \(n\). Then, it is possible to show that it is true also in a case when the number of inference steps equals \(n + 1\). Since any one of the rules \((W2)\) through \((W3)\) could be used in the last \((n + 1)\) step of inference, all those four cases should be discussed separately, analyzing the premises and using Definition 1 to show that the thesis holds. As it was mentioned before, a proof for the rule \((W6)\) is provided, see [15] for rules \((W2)-(W4)\).

\((W3)\) The first premise of \((W3)\) cannot be derived otherwise than using \((W1)\). Hence, \(A.r \leftarrow B.s \circ C.t \in \mathcal{P}\). The second premise of \((W3)\): \(\mathcal{P} \triangleright B.s \leftarrow X\) was derived from \(\mathcal{P}\) using at most \(n\) steps of inference, hence, \((B.s,X) \in \mathcal{I}_\rho\) according to the inductive hypothesis. By Definition 1, there exists such \(\mathcal{I}_j\) that \((B.s,X) \in \mathcal{I}_j\). Similarly, in the case of the third premise of \((W3)\): \(\mathcal{P} \triangleright C.t \leftarrow Y\), there exists such \(\mathcal{I}_k\) that \((C.t,Y) \in \mathcal{I}_k\). Let \(k\) be the maximum of \((i, j)\). Then \((B.s,X) \in \mathcal{I}_k\), \((C.t,Y) \in \mathcal{I}_k\) and \((A,r,X \backslash Y) \in f(\mathcal{I}_k, A.r \leftarrow B.s \circ C.t)\) according to \(f(\mathcal{I}_k, A.r \leftarrow B.s \circ C.t) = \{(A,r,X \backslash Y) \colon (B.s,X) \in \mathcal{I}_k \land (C.t,Y) \in \mathcal{I}_k\}\). Because \(f(\mathcal{I}_k, A.r \leftarrow B.s \circ C.t) \subseteq \mathcal{I}_{k+1} \subseteq \mathcal{I}_\rho\) then \((A,r,X \backslash Y) \in \mathcal{I}_\rho\).

A conclusion from Theorem 1 and Theorem 2 is such that the inference system of Definition 1 is sound and complete with respect to the semantics of RT credentials. This way, the inference system gives an operational definition of RT semantics (for \(RT_0\) and \(RT_c\)) and it proves that the inference system provides an alternative way of presenting the semantics of RT.

Example 3. (Inference system for Example 1): We use the inference system to formally derive entities which can have access to John’s galleries. Using credentials (1) – (14) according to rule (W1) it can infer:

\[
\begin{align*}
\text{John.accessPic} & \leftarrow \text{John.friend} \land \text{John.picClub} \in \mathcal{P} \\
\mathcal{P} & \triangleright \text{John.accessPic} \leftarrow \text{John.friend} \land \text{John.picClub}
\end{align*}
\]

\[
\begin{align*}
\text{John.accessMov} & \leftarrow \text{John.friend} \land \text{John.movieClub} \in \mathcal{P} \\
\mathcal{P} & \triangleright \text{John.accessMov} \leftarrow \text{John.friend} \land \text{John.movieClub}
\end{align*}
\]

\[
\begin{align*}
\text{John.privatePic} & \leftarrow \text{John.accessPic} \circ \text{John.blackList} \in \mathcal{P} \\
\mathcal{P} & \triangleright \text{John.privatePic} \leftarrow \text{John.accessPic} \circ \text{John.blackList}
\end{align*}
\]
we infer:

John.friend ← **Lily** ∈ **P**
\[\mathcal{P} \models \text{John.friend} \rightarrow \text{Lily} \]

John.friend ← **Maria** ∈ **P**
\[\mathcal{P} \models \text{John.friend} \rightarrow \text{Maria} \]

John.friend ← **Sofia** ∈ **P**
\[\mathcal{P} \models \text{John.friend} \rightarrow \text{Sofia} \]

John.pictureClub ← **Bob** ∈ **P**
\[\mathcal{P} \models \text{John.pictureClub} \rightarrow \text{Bob} \]

John.pictureClub ← **Etan** ∈ **P**
\[\mathcal{P} \models \text{John.pictureClub} \rightarrow \text{Etan} \]

John.pictureClub ← **Lily** ∈ **P**
\[\mathcal{P} \models \text{John.pictureClub} \rightarrow \text{Lily} \]

John.movieClub ← **Alice** ∈ **P**
\[\mathcal{P} \models \text{John.movieClub} \rightarrow \text{Alice} \]

John.movieClub ← **Maria** ∈ **P**
\[\mathcal{P} \models \text{John.movieClub} \rightarrow \text{Maria} \]

John.movieClub ← **Sofia** ∈ **P**
\[\mathcal{P} \models \text{John.movieClub} \rightarrow \text{Sofia} \]

John.blackList ← **Bob** ∈ **P**
\[\mathcal{P} \models \text{John.blackList} \rightarrow \text{Bob} \]

Then, using credentials (1), (4), (5), (8), (10), and rule (W4) we infer:

\[\mathcal{P} \models \text{John.accessPic} \rightarrow \text{John.friend} \cap \text{John.pictureClub} \]

\[\mathcal{P} \models \text{John.friend} \rightarrow \text{Bob} \quad \mathcal{P} \models \text{John.pictureClub} \rightarrow \text{Bob} \]

\[\mathcal{P} \models \text{John.accessPic} \rightarrow \text{Bob} \]

John.accessPic ← **Bob**

\[\mathcal{P} \models \text{John.accessPic} \rightarrow \text{John.friend} \cap \text{John.pictureClub} \]

\[\mathcal{P} \models \text{John.friend} \rightarrow \text{Lily} \quad \mathcal{P} \models \text{John.pictureClub} \rightarrow \text{Lily} \]

\[\mathcal{P} \models \text{John.accessPic} \rightarrow \text{Lily} \]

John.accessPic ← **Lily**

showing that the group of people who can see John’s pictures are Bob and Lily.

In the next step the newly inferred credentials and additionally credentials (3) and (14) with the rule (W5) is used:

\[\mathcal{P} \models \text{John.privatePic} \rightarrow \text{John.accessPic} \cap \text{John.blackList} \]

\[\mathcal{P} \models \text{John.accessPic} \rightarrow \text{John.blackList} \rightarrow \text{Bob} \]

\[\mathcal{P} \models \text{John.privatePic} \rightarrow \text{Bob} \quad \mathcal{P} \models \text{John.accessPic} \rightarrow \text{Lily} \]

John.blackList ← **Bob**

\[\mathcal{P} \models \text{John.privatePic} \rightarrow \text{Lily} \]

showing that only Lily can see John’s private collection. Additionally, if we want to find a group of people, who can see John’s movies, we can do this using credentials (2), (6), (7), (12), (13), and rule (W4). We infer:

\[\mathcal{P} \models \text{John.accessMovie} \rightarrow \text{John.friend} \cap \text{John.movieClub} \]

\[\mathcal{P} \models \text{John.friend} \rightarrow \text{Maria} \quad \mathcal{P} \models \text{John.movieClub} \rightarrow \text{Maria} \]

\[\mathcal{P} \models \text{John.accessMovie} \rightarrow \text{Maria} \]

showing that the group of people who can see John’s movies are Maria and Sofia.

6. Conclusions

This paper deals with modeling of trust management systems in decentralized and distributed environments. The modeling framework is a family of Role-based Trust management languages, especially RT and RTl languages. Two types of semantics for RT credentials have been introduced in the paper.

A set-theoretic semantics of RT languages is defined as a relation over a set of roles and a set of entities. An operational semantics of RT languages is defined as an inference system, in which credentials can be derived from an initial set of credentials using a set of inference rules. The semantics is given by the set of resulting credentials of the type \(A_r \leftarrow X \), which explicitly show a mapping between roles and sets of entities.

References

Anna Felkner graduated from the Faculty of Computer Science of Białystok University of Technology (M.Sc., 2004) and the Faculty of Electronics and Information Technology of Warsaw University of Technology (Ph.D., 2010). At present she is an Assistant Professor at Network and Information Security Methods Team in NASK Research Division. Main scientific interests concern the security of information systems, especially access control and trust management.

E-mail: anna.felkner@nask.pl

Research and Academic Computer Network (NASK)
Wąwozowa st 18
02-796 Warsaw, Poland